
Code Explanations: Automated Hierarchical Descriptions of
Program Behavior

Chetan Goenka
cgoenka@berkeley.edu
UC Berkeley EECS

Berkeley, California, USA

J.D. Zamfirescu-Pereira
zamfi@berkeley.edu
UC Berkeley EECS

Berkeley, California, USA

Figure 1: Overview of Code Explanations Interface

Abstract
With the increase in LLM-generated code used both personally and
professionally, the need to help users understand how computer
programs—a quintessential tool for thought—operate, and how they
might be modified, is more urgent than ever. This workshop paper
presents one approach at automatically generating explanations
for a program’s behavior at three levels of abstraction: per-line,
per-block, and by function parameter. Our hope is that these expla-
nations can help users make better sense of AI-generated code and
understand how to make changes towards a specific goal.

Keywords
LLM Code Generation; Explanations of Code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Chetan Goenka and J.D. Zamfirescu-Pereira. 2025. Code Explanations: Au-
tomated Hierarchical Descriptions of Program Behavior. In Proceedings of
Make sure to enter the correct conference title from your rights confirma-
tion email (Conference acronym ’XX). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
LLM-based code generation is becoming an increasingly popular
way to author computer programs, for both professional and per-
sonal use. Professionally, it has been reported taht over 25% of code
at AI and search giant Google is reportedly authored by AI [1].
Personally, new software platforms like OpenAI’s Canvas1 and An-
thropic’s Claude Artifacts2 enable the prototyping of software by
non-experts with no prior software expertise. These latter examples
are often pitched as tools for thought in the sense that they enable
the creation of personalized software in service of some personal
epistemic goal. Understanding code generated by AI is thus an
increasingly urgent challenge, especially because the population

1https://openai.com/index/introducing-canvas/
2https://support.anthropic.com/en/articles/9487310-what-are-artifacts-and-how-
do-i-use-them

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://openai.com/index/introducing-canvas/
https://support.anthropic.com/en/articles/9487310-what-are-artifacts-and-how-do-i-use-them
https://support.anthropic.com/en/articles/9487310-what-are-artifacts-and-how-do-i-use-them


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Chetan Goenka and J.D. Zamfirescu-Pereira

needing to do so may skew increasingly towards non-experts, that
is, people with only a few years’ experience, if any at all.

In this workshop paper, we present CodeExplainer, a tool that
shows hierarchical high-level explanations for code, at three levels:

(1) Individual lines of code
(2) Blocks of code, such as functions, classes, etc.
(3) Data flow: variables, parameters, and other state that is trans-

formed and passed through functions and classes.

CodeExplainer displays these explanations in situ as an inter-
active overlay, as shown in Figure 1. Two-word summaries of the
explanation for each line are shown persistently, while hovering
over these summaries expands a full explanation for the given line.
Block-level explanations are revealed on mouse hover over a bar
spanning the block itself; data flow explanations are revealed on
mouse hover over a function parameter, including destructured
parameters. These explanations are all generated by prompts we
designed using GPT-4o.

Through a small pilot, we find although explanations have the
potential to be useful, their usefulness is highly context- and task-
specific, and more work is needed to understand how best to gen-
erate and present code explanations.

2 Background
LLM-based code generation models have seen an explosion of in-
terest, driven in part by benchmarks like SWE-bench [5] for as-
sessing modle performance on a battery of real-world tasks. Multi-
agent models like MetaGPT [4] and CHATDEV [8], and computer-
controlling software engineering models like SWE-agent [9], sug-
gest a future inwhichmore andmore code and software is generated
by AI.

There has also been a lot of interest in HCI about how people
use these models; Barke et al. [2] show that experts and novices use
these differently, while Vaithilingam et al. show in Expectation vs.
experience that these models are not all just increasing in success
rates over time, but indeed all come with drawbacks as well.

Most recently, Yen et al. [10] use natural language descriptions in
code synthesis through “prompt blocks” to give programmers more
control, but this still operates with an assumption that program-
mers are authoring code directly. In the end-user programming
context, Liu et al. [7] propose generating explanations in “natu-
ralistic” language that is specifically grounded in LLM-generated
code.

In contrast, not much work has focused on how people attempt
to understand the code that is generated by these models; that’s
what we attempt to do here.

Before the advent of LLMs, tools to help users understand code
behavior tended to target more-novice users, such as Ko & Meyers’
Whyline [6] debugger. Whyline produces user-guided counterfactu-
als (“Why did...” or “Why didn’t...” something happen?) to support
users’ understanding of the behaviors of programs.

Lastly, Code Explanations also build on prior work visualizing
program code in a user-controllable hierarchy, including CodeBub-
bles [3].

3 Code Explanations: Goals & Design
We grounded our inquiry by identifying a set of questions users
might ask about a set of code upon encountering it for the first time:
[cite program understanding literature here] 1) How is this code
structured, or modularized? 2) What are the individual primitives
used? 3) How is data represented, and how is it shared among the
code’s structures? 4) What do individual lines of code do—how do
they contribute to their enclosing hierarchical structure?

Drawing on this prior work and our personal experiences, we
landed on three hierarchical levels at which we wanted to help
users understand a particular body of code:
HL1 Individual lines of code, as a low-level basis.
HL2 Higher-level components (e.g., functions, classes) that com-

prise those individual lines.
HL3 Interconnections between these components, in particular,

how data is shared and flows between them.
We chose these three levels as a set of approachable explanations

that could provide helpful insights for users across a wider set of
experience levels. Novice programmers, or programmers working
in an unfamiliar language, might find explanations of individual
lines of code helpful where their purpose is not otherwise clear;
experts, similarly, might find the higher-level explanations help
ground their exploration of a body of code while searching for
where some particular functionality is implemented.

One challenge in producing and displaying explanations using
this hierarchy is that there is potentially a lot of data to show all at
once, especially at level HL1. We address this challenge by adding
an additional information hierarchy for the by-line explanations,
described later.

4 Code Explanations: Implementation
Code Explanations consists of three primary components:

(1) A CodeMirror-based code editor
(2) An LLM-powered explanation generator
(3) Interactive annotation overlays for explanations

These components work together to provide context-aware insights
into the workings of the code at three different levels: Line-by-Line,
Block-wise, and Function Parameter Usage.

We use the Zod library to create a structured prompt query for
OpenAI’s GPT-4o model. This structured output provides the nec-
essary details, such as explanations, line numbers, and function
parameters, ensuring that the explanation elements are correctly
positioned and rendered with the corresponding content. The client
side implementation is written in JavaScript using the React frame-
work. We extend CodeMirror’s annotation capabilities by adding
DOM-based annotations to overlay interactive elements onto the
code editor. The system’s interactivity is driven by event-based
actions such as hovering and clicking, which expand inline tooltips
to reveal full explanation texts.

4.1 Line-by-Line Explanations
Line-by-Line explanations offer low-level insights into the code
through overlays and inline tooltips. with a 2-4 word summary that
captures the essence of the line’s function. This concise description
is overlaid on the code editor by default. Users can hover over these



Code Explanations: Automated Hierarchical Descriptions of Program Behavior Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

summaries to expand the annotation element and reveal a more
detailed explanation for the corresponding line of code.

4.2 Block-Wise Explanations
Block-level explanations provide high-level insights into logical
sections of the code. We allow the LLM to determine what consti-
tutes a block. Each block explanation contains the following key
details:

(1) A summary of the block’s purpose
(2) Inputs: The key data, variables, or components used
(3) Outputs: The results or changes produced
(4) Process: A concise description of the steps taken to achieve

its functionality
Each block is visually represented by a vertical line overlay on

the code editor, marking the block’s start and end. When users
hover over this vertical line, the corresponding block explanation
is displayed as a tooltip.

4.3 Function Parameter Explanations
Function parameter explanations provide insights into function
parameters and their occurrences throughout the code. Parameters
in function definitions are dynamically linked to all their occur-
rences in the code. Each explanation includes a summary of the
function parameter’s purpose and usage, and for every occurrence
of a function parameter, a context-aware explanation is generated.

When users hover over a highlighted function parameter, its
explanation is displayed on screen. Clicking a function parameter
highlights all its occurrences and displays their explanations. In this
state, hovering over an occurrence temporarily hides its explanation
to improve code visibility and reduce tooltip overlap. Clicking the
function parameter again restores the original view, removing the
expanded explanations.

5 Pilot Evaluation
We ran a small pilot evaluation with two members of our lab group,
both Computer Science PhD students. Each participant was tasked
with extending a tic-tac-toe game, written in JavaScript using React,
to add a “highlight” on the winning line. This code was chosen
from an official React documentation example. One participant
was an expert in React, while the other, though familiar, was not
an expert. Our goal was to identify how useful the explanations
were to understanding code and aspects that can be improved. We
were also interested in tracking the difference in usage between the
hierarchical levels of explanations—line-by-line, block-level, and
function parameter usage.

5.1 Explanation Content and Levels
Both participants found explanations most useful when they pro-
vided high-level insights rather than syntactical or logical descrip-
tions of individual lines. This was especially true for simple lines
of code, such as those containing parentheses or HTML tags. One
participant suggested that these explanations could instead convey
higher-level context, such as indicating which function or class is
being closed. The same participant also noted that when trying
to understand low-level details, they preferred “thinking in code

rather than English,” suggesting that explanations may sometimes
disrupt their thought process. Another key observation was that
explanations were mostly used when participants did not immedi-
ately understand something from the code itself, rather than as a
way to gain extra information or context. A participant, who was
asked to read the block-level explanations before starting the task,
noted that they were “helpful to read at the start for framing of
the problem,” reinforcing this insight. Additionally, the participant
found a specific set of line explanations particularly useful, as they
clarified the purpose of an array containing indices for possible
winning combinations—explaining whether a group corresponded
to the top, middle, or bottom row, the left, middle, or right col-
umn, or a diagonal. This suggests that explanations may be more
useful when they are tailored to provide higher level insights and
context-aware details about function and variable usage..

5.2 Data Flow and Function Level Explanations
A key point in the feedback was the need for function-level ex-
planations as a midpoint between low-level line explanations and
high-level block explanations. An important observation was that
the task required users to trace function call flows and data usage,
which they had to do manually by searching the code for specific
function or variable names to locate their uses. One participant
noted that explanations aiding in understanding and visualizing
function call flows could be very beneficial. Further, while working
on the task, the participant encountered a particular line explana-
tion and remarked, “Well, that wasn’t useful. I want to know where
this variable is being updated.” These observations suggest that
beyond static, text-based explanations, features allowing users to
trace function calls and variable usage would be valuable additions.

6 Future Work
Our pilot study provided valuable insights into how hierarchical
explanations aid code comprehension, areas for improvement, and
potential new features. To gain deeper insights, a next step for us
would be to conduct a more thorough evaluation with participants
spanning a wide range of coding experience, from beginners to
experts. This would help us understand how familiarity with pro-
gramming concepts and debugging strategies influences the use of
explanations and preferences for their depth and content.

An important area for future work is improving explanation
content based on the feedback we received in our study. This in-
cludes focusing on function calls and data usage to help users better
map out the flow of control in a program. Moreover, expanding
the hierarchy of explanations—such as introducing function-level
explanations and other higher-level options—could further support
user comprehension. Future iterations of the system could also add
adaptive explanations that adjust to user preferences or highlight
different aspects of the code based on the user’s needs at a given
moment.

Adding interactive features could further enhance usability. For
example, allowing users to trace function calls and variable updates
could reduce the effort of tracking these manually. Additionally, col-
lapsible code sections that toggle between high-level explanations
and detailed breakdowns may provide a more flexible experience.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Chetan Goenka and J.D. Zamfirescu-Pereira

Figure 2: Line Explanation Example

Figure 3: Block Explanation Example

Figure 4: Function Parameter Explanation Example

Finally, evaluating the tool in different contexts, such as de-
bugging, onboarding to a new codebase, or interview preparation,
would offer insight into its broader applicability. Testing the sys-
tem across different programming languages could also help deter-
mine whether the explanation strategies generalize well beyond
the JavaScript-React environment used in our study.

References
[1] 2024. Q3 earnings call: CEO’s remarks. https://blog.google/inside-google/

message-ceo/alphabet-earnings-q3-2024/

[2] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111. Publisher:
ACM New York, NY, USA.

[3] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola. 2010. Code bubbles: rethinking the user interface paradigm of integrated
development environments. In 2010 ACM/IEEE 32nd International Conference
on Software Engineering, Vol. 1. 455–464. doi:10.1145/1806799.1806866 ISSN:
1558-1225.

[4] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng,
Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jürgen Schmidhuber. 2023.

https://blog.google/inside-google/message-ceo/alphabet-earnings-q3-2024/
https://blog.google/inside-google/message-ceo/alphabet-earnings-q3-2024/
https://doi.org/10.1145/1806799.1806866


Code Explanations: Automated Hierarchical Descriptions of Program Behavior Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

MetaGPT:Meta Programming for AMulti-Agent Collaborative Framework. https:
//openreview.net/forum?id=VtmBAGCN7o

[5] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-World GitHub Issues? doi:10.48550/arXiv.2310.06770 arXiv:2310.06770 [cs].

[6] Amy J. Ko and Brad A. Myers. 2004. Designing the whyline: a debugging inter-
face for asking questions about program behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’04). Association for
Computing Machinery, New York, NY, USA, 151–158. doi:10.1145/985692.985712

[7] Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D Gordon. 2023. “What it wants me to
say”: Bridging the abstraction gap between end-user programmers and code-
generating large language models. 1–31.

[8] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng
Yang, Weize Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and
Maosong Sun. 2024. ChatDev: Communicative Agents for Software Development.
doi:10.48550/arXiv.2307.07924 arXiv:2307.07924 [cs].

[9] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao,
Karthik Narasimhan, and Ofir Press. 2024. SWE-agent: Agent-Computer In-
terfaces Enable Automated Software Engineering. doi:10.48550/arXiv.2405.15793
arXiv:2405.15793 [cs].

[10] Ryan Yen, Jiawen Stefanie Zhu, Sangho Suh, Haijun Xia, and Jian Zhao. 2024.
CoLadder: Manipulating Code Generation via Multi-Level Blocks. In Proceedings
of the 37th Annual ACM Symposium on User Interface Software and Technology.
ACM, Pittsburgh PA USA, 1–20. doi:10.1145/3654777.3676357

https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.48550/arXiv.2310.06770
https://doi.org/10.1145/985692.985712
https://doi.org/10.48550/arXiv.2307.07924
https://doi.org/10.48550/arXiv.2405.15793
https://doi.org/10.1145/3654777.3676357

	Abstract
	1 Introduction
	2 Background
	3 Code Explanations: Goals & Design
	4 Code Explanations: Implementation
	4.1 Line-by-Line Explanations
	4.2 Block-Wise Explanations
	4.3 Function Parameter Explanations

	5 Pilot Evaluation
	5.1 Explanation Content and Levels
	5.2 Data Flow and Function Level Explanations

	6 Future Work
	References

